A Comparison of Support Vector Machines and Self-Organizing Maps for e-Mail Categorization

نویسندگان

  • Helmut Berger
  • Dieter Merkl
چکیده

This paper reports on experiments in multi-class document categorization with support vector machines and self-organizing maps. A data set consisting of personal e-mail messages is used for the experiments. Two distinct document representation formalisms are employed to characterize these messages, namely a standard word-based approach and a character n-gram document representation. Based on these document representations, the categorization performance of both machine learning approaches is assessed and a comparison is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of supervised and unsupervised learning systems for multilingual text categorization

Due to the availability of a huge amount of textual data from a variety of sources, users of internationally distributed information regions need effective methods and tools that enable them to discover, retrieve and categorize relevant information, in whatever language and form it may have been stored. This drives a convergence of numerous interests from diverse research communities focusing o...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Signal Classifiers Using Self-organizing Maps: Performance and Robustness

This paper explores the use of self-organizing maps as a mechanism for performing unsupervised learning for signal classification. Approaches using unsupervised learning have a key advantage over traditional approaches that utilize neural networks and support vector machines because they do not require a training phase. We develop signal classifiers using self-organizing maps and explore their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005